API reference

Relational plots

relplot([x, y, hue, size, style, data, row, …])

Figure-level interface for drawing relational plots onto a FacetGrid.

scatterplot([x, y, hue, style, size, data, …])

Draw a scatter plot with possibility of several semantic groupings.

lineplot([x, y, hue, size, style, data, …])

Draw a line plot with possibility of several semantic groupings.

Categorical plots

catplot([x, y, hue, data, row, col, …])

Figure-level interface for drawing categorical plots onto a FacetGrid.

stripplot([x, y, hue, data, order, …])

Draw a scatterplot where one variable is categorical.

swarmplot([x, y, hue, data, order, …])

Draw a categorical scatterplot with non-overlapping points.

boxplot([x, y, hue, data, order, hue_order, …])

Draw a box plot to show distributions with respect to categories.

violinplot([x, y, hue, data, order, …])

Draw a combination of boxplot and kernel density estimate.

boxenplot([x, y, hue, data, order, …])

Draw an enhanced box plot for larger datasets.

pointplot([x, y, hue, data, order, …])

Show point estimates and confidence intervals using scatter plot glyphs.

barplot([x, y, hue, data, order, hue_order, …])

Show point estimates and confidence intervals as rectangular bars.

countplot([x, y, hue, data, order, …])

Show the counts of observations in each categorical bin using bars.

Distribution plots

distplot(a[, bins, hist, kde, rug, fit, …])

Flexibly plot a univariate distribution of observations.

kdeplot(data[, data2, shade, vertical, …])

Fit and plot a univariate or bivariate kernel density estimate.

rugplot(a[, height, axis, ax])

Plot datapoints in an array as sticks on an axis.

Regression plots

lmplot(x, y, data[, hue, col, row, palette, …])

Plot data and regression model fits across a FacetGrid.

regplot(x, y[, data, x_estimator, x_bins, …])

Plot data and a linear regression model fit.

residplot(x, y[, data, lowess, x_partial, …])

Plot the residuals of a linear regression.

Matrix plots

heatmap(data[, vmin, vmax, cmap, center, …])

Plot rectangular data as a color-encoded matrix.

clustermap(data[, pivot_kws, method, …])

Plot a matrix dataset as a hierarchically-clustered heatmap.

Multi-plot grids

Facet grids

FacetGrid(data[, row, col, hue, col_wrap, …])

Multi-plot grid for plotting conditional relationships.

FacetGrid.map(self, func, \*args, \*\*kwargs)

Apply a plotting function to each facet’s subset of the data.

FacetGrid.map_dataframe(self, func, \*args, …)

Like .map but passes args as strings and inserts data in kwargs.

Pair grids

pairplot(data[, hue, hue_order, palette, …])

Plot pairwise relationships in a dataset.

PairGrid(data[, hue, hue_order, palette, …])

Subplot grid for plotting pairwise relationships in a dataset.

PairGrid.map(self, func, \*\*kwargs)

Plot with the same function in every subplot.

PairGrid.map_diag(self, func, \*\*kwargs)

Plot with a univariate function on each diagonal subplot.

PairGrid.map_offdiag(self, func, \*\*kwargs)

Plot with a bivariate function on the off-diagonal subplots.

PairGrid.map_lower(self, func, \*\*kwargs)

Plot with a bivariate function on the lower diagonal subplots.

PairGrid.map_upper(self, func, \*\*kwargs)

Plot with a bivariate function on the upper diagonal subplots.

Joint grids

jointplot(x, y[, data, kind, stat_func, …])

Draw a plot of two variables with bivariate and univariate graphs.

JointGrid(x, y[, data, height, ratio, …])

Grid for drawing a bivariate plot with marginal univariate plots.

JointGrid.plot(self, joint_func, marginal_func)

Shortcut to draw the full plot.

JointGrid.plot_joint(self, func, \*\*kwargs)

Draw a bivariate plot of x and y.

JointGrid.plot_marginals(self, func, \*\*kwargs)

Draw univariate plots for x and y separately.

Style control

set([context, style, palette, font, …])

Set aesthetic parameters in one step.

axes_style([style, rc])

Return a parameter dict for the aesthetic style of the plots.

set_style([style, rc])

Set the aesthetic style of the plots.

plotting_context([context, font_scale, rc])

Return a parameter dict to scale elements of the figure.

set_context([context, font_scale, rc])

Set the plotting context parameters.

set_color_codes([palette])

Change how matplotlib color shorthands are interpreted.

reset_defaults()

Restore all RC params to default settings.

reset_orig()

Restore all RC params to original settings (respects custom rc).

Color palettes

set_palette(palette[, n_colors, desat, …])

Set the matplotlib color cycle using a seaborn palette.

color_palette([palette, n_colors, desat])

Return a list of colors defining a color palette.

husl_palette([n_colors, h, s, l])

Get a set of evenly spaced colors in HUSL hue space.

hls_palette([n_colors, h, l, s])

Get a set of evenly spaced colors in HLS hue space.

cubehelix_palette([n_colors, start, rot, …])

Make a sequential palette from the cubehelix system.

dark_palette(color[, n_colors, reverse, …])

Make a sequential palette that blends from dark to color.

light_palette(color[, n_colors, reverse, …])

Make a sequential palette that blends from light to color.

diverging_palette(h_neg, h_pos[, s, l, sep, …])

Make a diverging palette between two HUSL colors.

blend_palette(colors[, n_colors, as_cmap, input])

Make a palette that blends between a list of colors.

xkcd_palette(colors)

Make a palette with color names from the xkcd color survey.

crayon_palette(colors)

Make a palette with color names from Crayola crayons.

mpl_palette(name[, n_colors])

Return discrete colors from a matplotlib palette.

Palette widgets

choose_colorbrewer_palette(data_type[, as_cmap])

Select a palette from the ColorBrewer set.

choose_cubehelix_palette([as_cmap])

Launch an interactive widget to create a sequential cubehelix palette.

choose_light_palette([input, as_cmap])

Launch an interactive widget to create a light sequential palette.

choose_dark_palette([input, as_cmap])

Launch an interactive widget to create a dark sequential palette.

choose_diverging_palette([as_cmap])

Launch an interactive widget to choose a diverging color palette.

Utility functions

load_dataset(name[, cache, data_home])

Load an example dataset from the online repository (requires internet).

get_dataset_names()

Report available example datasets, useful for reporting issues.

get_data_home([data_home])

Return a path to the cache directory for example datasets.

despine([fig, ax, top, right, left, bottom, …])

Remove the top and right spines from plot(s).

desaturate(color, prop)

Decrease the saturation channel of a color by some percent.

saturate(color)

Return a fully saturated color with the same hue.

set_hls_values(color[, h, l, s])

Independently manipulate the h, l, or s channels of a color.