seaborn.
countplot
(x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None, palette=None, saturation=0.75, dodge=True, ax=None, **kwargs)¶Show the counts of observations in each categorical bin using bars.
A count plot can be thought of as a histogram across a categorical, instead
of quantitative, variable. The basic API and options are identical to those
for barplot()
, so you can compare counts across nested variables.
Input data can be passed in a variety of formats, including:
x
, y
, and/or hue
parameters.x
, y
, and hue
variables will determine how the data are plotted.In most cases, it is possible to use numpy or Python objects, but pandas objects are preferable because the associated names will be used to annotate the axes. Additionally, you can use Categorical types for the grouping variables to control the order of plot elements.
This function always treats one of the variables as categorical and draws data at ordinal positions (0, 1, … n) on the relevant axis, even when the data has a numeric or date type.
See the tutorial for more information.
Parameters: | x, y, hue : names of variables in
data : DataFrame, array, or list of arrays, optional
order, hue_order : lists of strings, optional
orient : “v” | “h”, optional
color : matplotlib color, optional
palette : palette name, list, or dict, optional
saturation : float, optional
dodge : bool, optional
ax : matplotlib Axes, optional
kwargs : key, value mappings
|
---|---|
Returns: | ax : matplotlib Axes
|
See also
Examples
Show value counts for a single categorical variable:
>>> import seaborn as sns
>>> sns.set(style="darkgrid")
>>> titanic = sns.load_dataset("titanic")
>>> ax = sns.countplot(x="class", data=titanic)
Show value counts for two categorical variables:
>>> ax = sns.countplot(x="class", hue="who", data=titanic)
Plot the bars horizontally:
>>> ax = sns.countplot(y="class", hue="who", data=titanic)
Use a different color palette:
>>> ax = sns.countplot(x="who", data=titanic, palette="Set3")
Use plt.bar
keyword arguments for a different look:
>>> ax = sns.countplot(x="who", data=titanic,
... facecolor=(0, 0, 0, 0),
... linewidth=5,
... edgecolor=sns.color_palette("dark", 3))
Use catplot()
to combine a countplot()
and a
FacetGrid
. This allows grouping within additional categorical
variables. Using catplot()
is safer than using FacetGrid
directly, as it ensures synchronization of variable order across facets:
>>> g = sns.catplot(x="class", hue="who", col="survived",
... data=titanic, kind="count",
... height=4, aspect=.7);