Conditional means with observations#
seaborn components used: set_theme()
, load_dataset()
, despine()
, stripplot()
, pointplot()
, move_legend()
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_theme(style="whitegrid")
iris = sns.load_dataset("iris")
# "Melt" the dataset to "long-form" or "tidy" representation
iris = pd.melt(iris, "species", var_name="measurement")
# Initialize the figure
f, ax = plt.subplots()
sns.despine(bottom=True, left=True)
# Show each observation with a scatterplot
sns.stripplot(
data=iris, x="value", y="measurement", hue="species",
dodge=True, alpha=.25, zorder=1, legend=False
)
# Show the conditional means, aligning each pointplot in the
# center of the strips by adjusting the width allotted to each
# category (.8 by default) by the number of hue levels
sns.pointplot(
data=iris, x="value", y="measurement", hue="species",
join=False, dodge=.8 - .8 / 3, palette="dark",
markers="d", scale=.75, errorbar=None
)
# Improve the legend
sns.move_legend(
ax, loc="lower right", ncol=3, frameon=True, columnspacing=1, handletextpad=0
)